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Abstract: The network paradigm is increasingly used to describe the dynamics of complex systems. Here we review the 

current results and propose future development areas in the assessment of perturbation waves, i.e. propagating structural 

changes in amino acid networks building individual protein molecules and in protein-protein interaction networks (inter-

actomes). We assess the possibilities and critically review the initial attempts for the application of game theory to the of-

ten rather complicated process, when two protein molecules approach each other, mutually adjust their conformations via 

multiple communication steps and finally, bind to each other. We also summarize available data on the application of per-

colation theory for the prediction of amino acid network- and interactome-dynamics. Furthermore, we give an overview of 

the dissection of signals and noise in the cellular context of various perturbations. Finally, we propose possible applica-

tions of the reviewed methodologies in drug design. 
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1. INTRODUCTION: AMINO ACID NETWORKS AND 

INTERACTOMES 

 The network concept gained an increasing ground in the 
analysis and prediction of complex system behavior in the 
last decade. Networks help our insight and understanding by 
reducing the complex system to a set of interacting elements 
{nodes/vertices}

1
, which are bound together by links {con-

tacts/edges/interactions}. In most currently used networks 
{graphs} links represent interactions between element pairs. 
Links usually have a weight, which characterizes their 
strength {affinity/intensity/probability}. Links may also be 
directed, when one of the elements has a larger influence to 
the other than vice versa [1-3].  

 The complexity of the living cell can be approached by 
several structural and functional networks. Cellular functions 
are well-described by metabolic networks, where the ele-
ments are small metabolites, and the links are the enzymes 
which produce them. In signaling and gene regulatory net-
works the signaling molecules constitute the elements, while 
their interactions give the links. Amino acid networks and 
protein-protein interaction networks {interactomes} form the 
two basal layers of the hierarchical networks of cellular 
structure. In the most commonly used amino acid networks 
the elements are the amino acids of protein molecules, while 
the links represent their neighboring position in space, if the 
inter-element distance is below a cut-off (which is usually 
between 0.45 and 0.85 nm). Amino acid networks may use 
weights instead of the cut-off, and may also discriminate in-
dividual atoms of the protein structure as elements [1, 3, 4]. 

*Address correspondence to this author at the Department of Medical 

Chemistry, Semmelweis University, H-1444 Budapest, P.O. Box 260, Hun-
gary; Tel: +36-1-266-2755; Fax: +36-1-266-6550;  

E-mail: csermely@puskin.sote.hu 

                                                
1In a few cases we list a number of commonly used synonyms of the given word to 

make it more familiar to those coming from various sub-disciplines. 

 Protein-protein interaction networks catalogue the inter-
action of cellular proteins. Regretfully there are only a few 
initial attempts to provide detailed information of the interac-
tion strength [5] as well as the variations present in individ-
ual, single cells [6]. Currently, most protein interactomes 
contain a list of the most probable protein-protein interac-
tions in an average cell of the respective organism, where 
link weights (if exist) represent the probability of the particu-
lar interaction. This interaction-probability roughly corre-
lates to the association constant of the given protein pair [7] 
but a detailed characterization of interactomes is clearly an 
important task of future research. Higher levels of the struc-
tural hierarchy in the cell (going beyond the scope of our 
current review) can be described by the cytoskeletal and or-
ganelle-membrane networks [3]. 

 Most cellular networks are small worlds, where two ele-
ments of the network are separated by only a few other ele-
ments. Small-worldness helps the fast transmission of per-
turbations. Networks contain hubs, i.e. elements, which have 
a large number of neighbors {have a high degree}. Amino 
acid networks have a Poissonian degree distribution, which 
means that they have a negligible amount of hubs. On the 
contrary, protein-protein interaction networks often display 
scale-free degree distribution, which means that the probabil-
ity to find a hub with a number of neighbors a magnitude 
higher is a magnitude lower (but, importantly, not negligi-
ble). Both amino acid and protein-protein interaction net-
works can be dissected to overlapping modules {communi-
ties/groups}, which often form a hierarchical structure. Both 
hubs and modules provide a filtering mechanism to prevent 
perturbation-overload and to avoid the excessive propagation 
of network damage. Amino acid networks and interactomes 
are often heterogeneous, and their different modules may 
behave completely differently. Moreover, sampling bias and 
improper data analysis may show small-worldness, scale-
free distributions and modularity in such cases, where they 
do not actually exist. Therefore, special caution has to be 
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taken to scrutinize the validity and extent of datasets, use 
correct sampling procedures and adequate methods of data 
analysis [1, 3, 4, 8]. 

2. DYNAMICS OF AMINO ACID NETWORKS 

 Protein structure dynamics plays an essential role in pro-
tein function and regulation. The role of dynamics has been 
studied both theoretically [9] and experimentally [10, 11] 
since a long time. Several, methodologically different ap-
proaches exist, which use network methodology, like (i) the 
energy network models, (ii) models using mostly physical 
and statistical mechanical approaches like Gaussian network 
models (GNM) [9] and (iii) network methods using informa-
tion and graph theory approaches, like the protein structural 
networks [12]. 

 Amino acid networks take into account only the interac-
tions between amino acid side-chains, and neglect the con-
straints of the protein backbone. The neglect of the protein 
backbone does not make a problem, if we analyze only the 
topology of these networks, and want to draw conclusions 
for the structure and stability of proteins. As an example for 
this, using a structural network, Atilgan et al. [12] showed 
that the fluctuations of amino acid side chains (taken from 
experimental data) are strongly correlated with the spatial 
arrangement of protein residues. This reflects that central 
amino acids (having a smaller average of their shortest path 
lengths) have a more restricted motion. 

 Different methods were used to understand the dynamics 
of topological networks and to explain protein motions and 
conformational rearrangements. One possibility is the elastic 
network model, where only the atomic coordinates of the C 
atoms are used to build the network, which makes the calcu-
lations computationally inexpensive. In this model a har-
monic potential is used to account for pair-wise interactions 
between all C atoms [9, 13]. However, such a network can-
not be studied by the mathematical framework of graph the-
ory, and it requires more sophisticated statistical mechanical 
methods. Using the elastic network model a set of sparsely 
connected, highly conserved residues were identified, which 
are key elements for the transmission of allosteric signals in 
three nanomachines, such as DNA polymerase, myosin and 
the GroEL chaperonin [13]. Protein backbone motions had 
been predicted for a set of proteins and showed good agree-
ment with experimental results, when the reorientational 
contact-weighted elastic network model was applied [14]. 

 Another elastic network representation includes all at-
oms, forming a spring network [15]. Overconstrained (hav-
ing more crosslinking bonds than needed) and undercon-
strained (with less crosslinking bonds than needed) protein 
regions were successfully identified using this approach. 
These regions correspond with rigid and flexible protein 
segments, respectively [14]. A recent paper combines the 
elastic network model with a network-theory approach, un-
derlying the observation that functionally active residues 
have enhanced communication (connection) properties [16]. 
Since this model investigates the information propagation 
time, this approach may shed new insight on the allosteric 
function of enzymes. 

 Networks can also be used to model conformational tran-
sitions. In energy network models nodes represent conforma-

tional states of the protein, while links correspond to the 
transitional states between them [17]. An interesting Monte 
Carlo study by Andrec et al. [18] combines the results of 
molecular dynamics simulation with network approach to 
understand the folding kinetics of the G-protein C-terminal 
peptide. In this model the conformational states were ap-
proximated by replica-exchange molecular dynamics simula-
tions, and the transitions were studied by network methodol-
ogy. With this method helical on-pathway intermediates had 
been observed during folding the G-peptide -hairpin. In 
similar studies the folding kinetics of the villin headpiece has 
also been investigated. By constructing the Markovian State 
Model it became possible to propagate villin dynamics to 
times far beyond the directly simulated, and to rapidly calcu-
late long time kinetics (to tens of microseconds) and evolu-
tion of ensemble property distributions [19]. Although due to 
computational restrictions only small proteins (peptides) 
were studied so far using the network approach, this area 
will certainly provide a number of interesting results in the 
near future. 

 The energy network approach is analogous to that of the 
conformational networks. In this latter approach the energy 
landscape of the protein is modeled by a network: the nodes 
of are the different conformational states of the protein, 
while the links correspond to the transition states between 
them. The energy landscape has both a small-world and 
scale-free character [20, 21], which might give an explana-
tion of the high dynamism of most protein structures: the 
small-world character ensures that a node of network (which 
always represents a protein conformation) is only a few steps 
(conformational transitions) apart from any other conforma-
tion. Besides explaining the large flexibility in protein func-
tion and regulation, the small-world character, when applied 
to protein-folding, also provides an alternative, network-
based explanation to solve the Levinthal-paradox [4]. 

3. PROTEIN-PROTEIN INTERACTIONS: A POSSI-
BLE APPLICATION OF GAME THEORY 

 When a protein-protein interaction develops, the two 
partners approaching each other continuously interact with 
each other influencing each other’s structure (or in another 
framework each other’s energy landscape). Several models 
had been proposed to describe the process of protein-protein 
interaction, beginning with the well known “lock and key 
model” proposed by Emil Fischer in the 19

th
 century [22]. 

However, it is clear, that most protein-protein interactions 
cannot be described in such a simple, rigid and one-step way. 
Several pieces of evidence suggest that the rigidity of the 
“lock and key model” is not a good approximation, since 
during the interaction process proteins influence each other’s 
structure. The “induced fit” model [23] describing this con-
formational interdependence had been successful for a bun-
dle of proteins [24] and is still a centerpiece of our bio-
chemical understanding of protein interactions and enzyme 
function.  

 Recently an alternative for the induced fit mechanism, 
the “pre-existing equilibrium/conformational selection” 
model emerged. For this model it had been proposed that the 
native state of the protein cannot be described as one well-
defined conformational state, but rather reflects a conforma-
tional ensemble, from which the most suitable conforma-
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tional state(s) binds the other protein (or the substrate) there-
fore shifting the equilibrium towards the complex formation. 
Suitable, ‘binding-competent’ conformational states are of-
ten well-populated, likely conformations of the original, 
‘lonely’ protein structure, which helps a lot to ‘lock-in’ the 
protein to the ‘binding-competent’ conformation [25, 26].  

 However, from both the experimental evidence and from 
theoretical results it seems that the protein-protein interac-
tion process is much more complicated than the above mod-
els suggest. When two proteins bind to each other, neither of 
them can be approximated as a small, rather rigid molecule, 
which makes this scenario much more complex, than the 
“simplified” substrate-binding models (in fact the substrate 
molecules are also flexible, therefore, in principle the ideas 
below also hold on the explanation of the molecular details 
of enzyme kinetics). Here we list a few recent observations, 
which suggest that the development of protein-protein inter-
actions is a multi-step, sequential process, where many con-
secutive steps can only happen, if certain preceding steps 
have been successful, and where ‘binding-competent’ steps 
from one of the binding proteins require cooperative, preced-
ing or successive ‘binding-competent’ steps from the other 
binding protein. This ‘interdependent protein dance’ can be 
described well in terms of the game theory [27]. 

• In many cases one-step models do not explain well the 
sequential and multi-dependent conformational changes 
which take place during protein-complex formation [28].  

• At the interaction of cytochrome-c with lysozyme a 
weak, long-range attraction had been observed, which 
had a range several times that of the diameter of the pro-
tein molecule. This interaction enables the development 
of ‘game-steps’ and allows the development of an intri-
cate communication pattern, an ‘approach-path’ as the 
two proteins become increasingly engaged in the interac-
tion. Moreover, the interaction was strongly influenced 
by the ions present in the solution, which introduced yet 
another set of players into the already complex protein-
protein game [29].  

• During the initial steps of protein-protein interactions a 
number of transient complexes are formed. However, in 
most cases such transient states escaped detection by 
usually applied experimental techniques. In recent stud-
ies the assembly of the 30S ribosomal subunit was as-
sessed in detail and it has been shown that the protein-
RNA complex undergoes various local conformational 
transitions as the assembly develops [30]. In another 
study using paramagnetic relaxation enhancement an en-
semble of various transient, non-specific encounter com-
plexes was observed during the encounter of several pro-
tein complexes including the amino-terminal domain of 
enzyme I and the phosphor-carrier protein HPr [31]. 

 The game-theory approach (‘protein-games’) [27] may 
give a novel insight to understand the complex phenomenon 
of protein-protein interactions. The emergence of coopera-
tion is a long-time studied field in game-theory [32]. Condi-
tions helping the cooperation in spatial games [33] offer a 
very helpful framework to apply the results of game theo-
retical studies to the formation of protein-protein complexes. 
Since spherical constraints significantly reduce the possible 

network topologies of the two amino acid networks (i.e. pro-
teins) ‘playing with each other’, general conditions extend-
ing cooperation can be helpful to predict key requirements of 
successful protein-protein interactions from the point of the 
interdependent protein dynamics. A recent report highlighted 
two basic conditions, learning and innovation, to extend the 
network topologies able to maintain a significant level of 
cooperation [34]. In protein-protein interactions, learning 
may correspond to the steering process as the two proteins 
gradually approach each other, and gain an increasing 
amount of information of the other’s structure and require-
ments for efficient docking, like in the case of cytochrome c 
and lysosime we mentioned above [29]. Innovation is actu-
ally a low level of randomness, which is emerging from all 
the protein dynamics we described above. In a recent sum-
mary starting from the significant presence of structural dis-
order in protein complexes, Tompa and Fuxreiter [35] raised 
the general possibility of “fuzzy complexes”, where a non-
significant disorder is a general feature of the protein com-
plex. Such fuzzy conditions may also significantly contribute 
to the level of innovation, which is needed to maintain coop-
eration at a wider range of network topologies [34], which is 
a usual requirement during protein complex formation, 
where both amino acid networks engaged in this process 
undergo a set of significant topological changes. 

4. INTERACTOME-DYNAMICS 

 Protein-protein interaction networks display a high dy-
namism. The seemingly ‘rock-solid’ core-histones, protected 
by both the rest of the nucleosomal structure and by the 
DNA wrapped around them, have a surprisingly little 5 min-
utes half-life only in their original position. The cell is full 
with ‘moonlighting’ proteins, which appear at completely 
unexpected positions and functions [36-38]. Beyond the con-
tinuous link re-arrangements, proteolysis and synthesis of 
cellular proteins make to vanish and re-appear a lot of inter-
actome elements. Network modules of the yeast interactome 
may be dissected to static and dynamic modules using the 
information of gene expression changes. The pathway struc-
ture of static modules is more redundant, which allows a 
faster evolution and larger tolerance of gene expression 
noise. On the contrary, dynamic modules help the condition-
dependent, flexible regulation of cellular responses [39, 40]. 
Different forms of protein dynamics can be easily discrimi-
nated in case of date-hubs and party-hubs, where date-hubs 
form complexes with different subsets of their partners at 
different times and cellular locations, while party-hubs form 
complexes with all of their partners simultaneously. Date 
hubs – logically – usually have a single binding surface, 
while party hubs are multi-interface proteins. Date hubs con-
tain more disordered regions, while party hubs have a larger 
tendency to form a rich-club, i.e. a network region, where 
party-hubs are associated preferentially with each other [40-
43].  

5. APPLICATIONS OF PERCOLATION THEORY TO 
ASSESS NETWORK TOPOLOGY, DYNAMICS AND 

EVOLUTION 

 Percolation theory is a widely used model in rather dif-
ferent areas from porous material characteristics, as well as 
transport theory to the spread of information or modeling the 
propagation of forest fires [44, 45]. The renaissance of net-
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work research triggered several percolation-related studies in 
a number of new directions including amino-acid networks 
and protein interactomes, where the percolation phenome-
non, i.e. the emergence of a large, communicating network 
segment can efficiently model a number of key biological 
processes including protein folding, network rearrangements 
in stress and disease, and the transmission of information 
within and between proteins. Additionally, the percolation-
based assessment of system-level parameters (emergent 
properties) of cellular networks helps to understand cell sig-
naling, differentiation, death and evolution. However, we 
must warn that we are in a very early stage of connecting 
protein networks and percolation theory. In the following 
part we will summarize the initial opportunities and highlight 
further areas of exciting studies. 

 The application of percolation theory is especially useful 
in situations, where the formation of amino-acid networks 
can be observed, i.e. during the protein folding process [46]. 
Self-similarity and fractal-like structure is typical to many 
real-world networks [47]. The amino acid network of protein 
structure is also self-similar to a certain level, and the result-
ing protein structure can be characterized by a fractal dimen-
sion, a quantity describing the roughness of the surface [48]. 
In protein folding percolation is achieved, when a giant-
component of the amino-acid network is formed, i.e. when at 
a critical point most of the amino acids become abruptly 
connected as folding proceeds. Formation or destruction of 
the giant component can be characterized by a dynamic scal-
ing behavior, i.e. the approximation of relevant physical 
properties, like correlation length and free energy, by power-
laws in the vicinity of the critical point. In this approxima-
tion the difference of the physical property from the critical 
point values is raised to the power of the critical exponents. 
These critical exponents are thus crucial, as they characterize 
well the actual values of many key functions of protein fold-
ing. Some of the critical exponents describing the folding 
process were found to depend only on the fractal dimension 
and on the Euclidean dimensionality [49]. This direct rela-
tion between the static network properties and the dynamic 
network behavior is an important contribution to both perco-
lation theory and network science. However, proteins display 
a multi-fractal behavior: it is difficult to define a single frac-
tal dimension for a large protein molecule, because of its 
non-homogeneous structure and of the absence of complete 
self-similarity [50]. Nevertheless, protein folding offers the 
possibility for a number of percolation-based further studies. 
Protein function and the interactions of folding proteins (e.g. 
with surface water) may undergo abrupt changes when the 
underlying amino acid network gets close to the critical 
point. Percolation-studies on local network segments (e.g. 
modules of the amino acid network often corresponding to 
functional protein modules or domains [4]) may offer an 
additional level of understanding, where the multi-fractality 
of proteins may be better approximated by single, local frac-
tal dimensions.  

 Besides the possible modularity of amino acids networks, 
studies monitoring the breakdown of percolation may also be 
used to identify modules of protein-protein interaction net-
works. For this purpose, interaction patterns are represented  
 

in the adjacency matrix, where the entry is 1=ijA , if the 
nodes i  and j  are linked, while otherwise 0=ijA . The dif-
ference between eigenvalues of the adjacency matrix is 
called level spacing. Depending on correlations between 
eigenvalues, the level spacing distribution can follow the 
statistics of Gaussian orthogonal ensemble (strong correla-
tion), Brody distribution (intermediate state) or Poisson dis-
tribution (no correlation). It has been shown for random net-
works that level spacing distribution changes from Gaussian 
statistics through Brody distribution to Poisson distribution, 
as the critical point is approached by the decrease of the av-
erage degree [51]. This observation holds for the protein-
protein interaction network of Saccharomyces cerevisiae: 
when the giant component is destroyed in a sequential node 
deletion process simulating an intentional attack, the level 
spacing distribution undergoes a dramatic transition. In this 
process the Gaussian statistics of the level spacing distribu-
tion is replaced by exponential curves referring to Poissonian 
statistics. As percolation is accompanied by the above 
changes in eigenvalue distributions, it is possible to identify 
modules of the protein interactome containing elements, 
which remain linked even at the level of link-removal, when 
the Poissonian statistics appear [52]. 

 Beyond the identification of protein-protein interaction 
modules by percolation studies, modular differences in the 
percolation process offer an efficient method for the charac-
terization of real-world protein networks and may also re-
flect important functional consequences. Different local lev-
els of percolation may reveal different functional states of 
cellular modules/protein complexes, which may undergo 
profound changes in stress, during the cell cycle, cell differ-
entiation and disease.  

 Another paper with a strong mathematical background, 
but with more direct applications uses bond-percolation to 
define a novel measure of significance of proteins in their 
cellular context. Originally, the importance of proteins 
measured by their essentiality was correlated by their num-
ber of neighbors, i.e. degree [53]. The percolation-based 
study of Chin and Samanta [49] used global connectivity 
measures in the unweighted yeast protein-protein interaction 
network, which were shown to correlate stronger with essen-
tiality than the local connectivity data (degrees) of the indi-
vidual proteins. To define global connectivity a stochastic 
analysis was made by randomly removing a given proportion 
of edges. The importance of a vertex was given by the frac-
tion of other vertices to which it remained linked; impor-
tance of links was measured by their contribution to the 
overall connectedness (i.e. the number of all protein pairs 
that were connected in their presence but became disjoint 
without them) (Fig. 1). These definitions seem to be rather 
useful for characterizing biological significance and agree 
well with the results of other studies correlating the impor-
tance with betweenness centrality [54] and a centrality 
measure coming from the overlapping modular structure of 
the interactome [55]. Percolation-based significance meas-
ures may be conducive for important studies in other bio-
logical systems, such as in the determination of hot-spots in 
amino-acid networks, or those of combined amino-
acid/water structural networks of proteins or protein com-
plexes. 
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 A third study connecting percolation theory and protein-
protein interactomes considers an evolving protein interac-
tion network with functional duplication of proteins and the 
addition of random links representing the possible mutations 
[56]. When link-addition was dominant, an infinite-order 
percolation transition arose at a critical value of the addition 
rate (Fig. 2). The link addition rate appears in the differential 
equation from which the expected number of percolating 
clusters can be obtained. Thus, link addition affects both the 
expected number of percolating clusters and the size of the 
emerging giant component. Link additions also allow cluster 
mergers and thus strongly affect cluster size distribution in a 
growing network. At the critical point, where the link addi-
tion rate reaches its critical value, there was a jump in aver-
age cluster size, and size distribution also changed abruptly. 
Link addition also affected the size of the giant component. 
The percolation was of infinite order, as the size of the 
emerging giant component depended on the link addition 
rate in a special way: all of the derivatives of the size of the 
giant component vanished as the addition rate converged to 
its critical value. In the opposite extreme of the parameter-
set, when the duplication rate was extremely high, the net-
work exhibited giant structural fluctuations in different reali-
zations (Fig. 2). This shows that mutations are vital for self-
averaging and the emergence of robustness and statistical 
properties similar to those observed in real protein interac-
tion networks. 

 The above observations are similar to our findings show-
ing the importance of errors (‘innovation’) in the mainte-
nance of cooperation in spatial games [34], and poses the 
very interesting opposite of Orgel’s famous “error-
catastrophe” model [57], implicating the existence of a ‘per-
fection-catastrophe’ on the other end. The required minimal 
rate of mutations and the appearance of critical behavior 
below this critical mutation rate can be interesting aspects of 
further studies concerning the evolution of protein structure, 
protein complexes and full-range protein interactions in 
cells. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). A schematic ‘phase-diagram’ of a percolation-based pro-

tein interaction network evolution model. The model of Kim et al. 

[56] used the dual effects of the functional duplication of proteins 

and the addition of random links representing possible mutations. 

When link-addition was dominant, an infinite-order percolation 

transition arose at a critical value of the addition. In the opposite 

extreme of the parameter-set, when the duplication rate was ex-

tremely high, the network exhibited giant structural fluctuations in 

different realizations. The study showed that mutations are vital for 

self-averaging and the emergence of robustness and statistical prop-

erties similar to those observed in real protein interaction networks. 

 In spite of the interesting advances above, we are far 
from the straightforward opportunity of functionally rele-
vant, simultaneous percolation assessments of both protein 
structures and protein-protein interaction networks. Such a 
hierarchical percolation approach would allow the unbiased 
identification of key protein complexes and their hot-spots in 
the complex cellular architecture, and would also help us to 
understand the changes in information flow and importance 
in a large number of cellular states, including stress, cell cy-
cle, cell differentiation, and various diseases.  

 

 

 

 

 

 

 

 

 

Fig. (1). Percolation analysis of the yeast protein-protein interaction network. The illustrative figure summarizes some of the finding of Chin 

and Samanta [49]. Changes in percolation identified two classes of important proteins. The first class consisted of hubs having a high degree, 

like the nuclear localization signal receptor protein, SRP1 or the mitochondrial receptor, JSN1. Proteins of the second class had high be-

tweenness but low average degree, like the tRNA nuclear exporter, UTP8 or the pre-ribosomal factor, MAK11 [49]. 
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6. INITIAL ATTEMPTS AND POSSIBLE WAYS TO 
MODEL PERTURBATION WAVES IN INTERAC-

TOMES 

 Perturbation waves can efficiently model a number of 
key cellular processes, such as signal transduction, gene ex-
pression, as well as changes in metabolite concentrations. In 
the current review we restrict our summary to those, which 
can be interpreted as propagating conformational changes of 
proteins. The framework of perturbation waves can be ap-
plied to most processes above, and also allows the construc-
tion of efficient models to understand the propagation of 
noise, the fluctuations and diversity of individual cells gov-
erning phenotype variations, cellular movement, cell division 
and other physical rearrangements inside the cells and the 
threshold between smaller disturbances and larger damages 
[58, 59].  

 Perturbation wave models have to consider the spread of 
perturbations inside and between individual proteins in the 
protein-protein interaction network (Fig. 3). Prediction of 
distant effects after an initial perturbation applied to a com-
ponent in a system of discrete elements is a rather difficult 
task. The spread of perturbation depends on several factors. 
First, the topology of the contact map (exemplified by both 
the amino-acid and protein-protein interaction networks) is 
decisive. As an example for the importance of network to-
pology, protein interactomes having a small-world property 
dampen fluctuations and enhance synchronization [60]. Sec-
ond, the coupling-characteristic is also an important factor. 
As key examples, coupling-delays and coupling strength 
both affect the stability of collective behavior [61]. Third, 

conditions required for a coherent action of network ele-
ments are grossly altered if the system is pulse-coupled (i.e. 
the interactions are pulse-like, where changes in the states of 
interacting elements are abrupt, large and return close to the 
original level within a short time). Many interactions be-
tween the elements of highly regulated biological systems 
can be described in terms of pulse-coupling [62]. Fourth, 
changes and evolution of contact-map topology are also im-
portant. In this latter case, snap-shots of evolutionary histo-
ries can also be averaged in time [63]. 

 Coupled oscillator systems are commonly used to model 
the spread of perturbation in complex systems. In an effort to 
give account of both spatial and temporal variations of a 
complex system containing both attractions and repulsions 
moving oscillators have been studied in a bounded spatial 
domain with truncated elastic forces controlling their move-
ments. In this model the interactions were restricted to an 
interaction range and were modified by the internal variables 
of the elements (e.g. by the phase differences between the 
oscillators). It has been shown that the emergence of clusters 
was largely affected by the collective phenomena of interac-
tion ranges and the dispersion of time scales of changes in 
the internal variables [64]. The most relevant oscillator-
related work to date assessing the propagation of perturba-
tions considered a totally synchronized random network of 
phase-coupled oscillators and examined the effect of an ex-
ternal harmonic perturbation applied to one of them [65]. 
Other variables (spatial coordinates, delays, variable cou-
pling strengths, etc.) were omitted in this study to give a first 
approach of the perturbation phenomenon. For small dis-
tances on a random network, the system was found to behave 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Schematic representation of the hierarchical levels of perturbation-wave propagation in cellular networks. When modeling the 

propagation of perturbations we have both assess their spread inside the proteins (which can be well described by amino acids networks; for 

details, see text), and across the individual proteins, i.e. in the interactome of the cell. 
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as a linear dissipative medium: the perturbation propagated 
at a constant speed, while its amplitude decreased exponen-
tially with the distance. For larger distances, the response 
was saturated to an almost constant level, because the expo-
nentially decaying signal had an exponentially growing 
number of available paths to reach the distant nodes. The 
results of this study can be extended to other interaction pat-
terns and chaotic oscillators. 

 Collective behavior is not restricted to the simpler mod-
els of coupled oscillators, but also emerges in amino-acid 
networks of single protein molecules. Evidence from single-
molecule experiments on a tetrameric enzyme ascertained 
the textbook model of cooperativity at a single-molecule 
level showing that ligand binding of the four subunits was 
not independent from each other: the majority of tetramers 
showed a one-step jump from no activity to the highest state 
of activity without observable intermediate states. Moreover, 
released inhibitors left occasional conformational traces be-
hind causing heterogeneity among protein molecules [59]. 
So, it is straightforward to presume that complex communi-
cation-patterns emerge both inside individual proteins and in 
their oligomeric complexes. In an intriguing information-
theoretic approach the communication characteristics of pro-
tein residues were investigated. In this discrete-time, dis-
crete-state Markov model link affinities between residues 
were defined by the number of atom-atom contacts. Signal 
transmission probabilities were postulated to be proportional 
with link affinities. The hitting time was the average number 
of steps of the information residing at a residue to reach an-
other in the amino-acid network of the protein. Communica-
tion processes were characterized with averages of hitting 
times. Functionally active residues were found to possess 
enhanced communication propensities. Additionally, a direct 
dependence between signal transduction events and equilib-
rium fluctuation dynamics has been detected [16]. As an 
additional example for the emergence of network-dependent 
‘hot-spots’ in protein structure, a topology-based nonlinear 
network model of protein dynamics elicited that the sponta-
neous localization of vibrational energy is both wide-spread 
and site-dependent. In this model an original elastic network 
model (where the tension-derived energy is proportional 
with a second order term of atomic dislocations) was ex-
tended by adding a fourth order term of dislocations to the 
energy, which led to nonlinear forces. Nonlinear, high-
frequency modes tended to be localized at the stiffest part of 
the network [66]. The localized vibrational energy stored in 
these regions may contribute to enzymatic activity. Thus 
local protein stiffness, central communication and enzymatic 
activity seem to be coupled. Vibrations of nonlinear origin 
may be concentrated at communicationally key residue-sets, 
and play an important role in energy storage and transfer 
during specific biological functions, like enzymatic proc-
esses or signal transduction. As a good additional example 
for the dynamical changes in perturbation-propagation, 
Ghosh and Vishveshwara [67] found four major communica-
tion paths in tRNA synthase, which were connected only, 
when the enzyme bound both substrates. This suggests the 
possibility of similar specialization of perturbation propaga-
tion pathways in case of special conditions requiring a spe-
cialized function instead of a general responsiveness. Such a 
scenario may occur at the cellular level during signaling. 

 Energy landscapes provide a coherent picture for the as-
sessment of the energy-changes during conformational tran-
sitions. If energy minima are treated as nodes and possible 
transitions as links we get an ‘energy-network’, if different 
conformational states are the nodes linked by transitions than 
the resulting system is called as a ‘conformational network’. 
Both can be useful for a complex representation of propagat-
ing perturbations, particularly after recent advances avoiding 
cases when different physical states have the same value of 
the measured observable [68]. A self-organized critical be-
havior often emerges in proteins, where relaxations are re-
stricted. This is exemplified by the local accumulation of 
tensions and energy as shown in different models above, and 
by consecutive avalanches of propagating relaxations. Acti-
vation energies on energy landscapes are decreased by both 
water and molecular chaperones. The presence of water and 
chaperones ‘softens’ the network, make the propagation of 
perturbations smoother and their modeling easier [4, 27, 69]. 
Water and chaperones may play an important role in the 
‘fine-tuning’ of enzyme activity and signal transduction. 

 At this point, we may conclude that exponential decays 
and smaller, rigid hot-spots with communication centrality 
are the only prevalent forms of interactions in coupled bio-
logical systems, and communication patterns are restricted to 
individual proteins or protein complexes. This is surely not 
the case. A number of examples, including the interactions 
of different receptors and actin filaments, show that confor-
mational changes can propagate through extended lattices of 
protein molecules [58]. Duke et al. [70] offer an impressive 
theory motivated by statistical mechanics to explain these 
phenomena. They suppose a significant interaction between 
adjacent protein subunits, and also pose that two adjacent 
subunits having the same conformation have a lower com-
bined energy, than the same adjacent subunits in different 
conformations. Treating ligand binding in energy terms, they 
obtain probabilities for different conformation states. Fa-
vorably, their model includes the canonical models of allos-
tery as special cases. This obvious improvement does not 
come without a cost: the historical MWC (Monod, Wyman, 
Changeux) and KNF (Koshland, Néméthy, Filmer) models 
have two main parameters each. On the contrary, the general 
version of the Duke et al. model [70] contains five parame-
ters, which makes it more complicated. Nevertheless, the 
general five-parameter model provides a comprehensive de-
scription of a variety of allosteric effects and is extendable to 
non-equilibrium states as well. 

 Dealing with real-world amino-acid and protein-protein 
interaction networks, there are two possibilities: either to use 
a complex simulation pattern aiming to encompass lots of 
different aspects (e.g. mapping the intracellular space onto a 
lattice, and fill it with moving proteins to capture the discrete 
and stochastic nature of interactions) [36], or to investigate 
single effects contributing to the understanding of the com-
plex cellular behavior. An interesting example of the latter 
case is the work of Maslov and Ispolatov [5] computing re-
sponses to an abrupt, 2-fold local concentration change in the 
yeast protein-protein interaction network. The authors used 
the mass-action law to assess free protein concentrations in 
the yeast cell. The effects of a perturbation changing the 
abundance of a chosen protein were strongly localized: there 
was an exponential decay in the changes of free protein con-



168    Current Protein and Peptide Science, 2009, Vol. 10, No. 2 Antal et al. 

centrations as moving away in the protein-protein interaction 
network from the perturbed node. Still, under specific favor-
able conditions concentration perturbations could selectively 
propagate over network distances up to four steps. Perturba-
tions are certainly affected by the modular structure of both 
proteins and interactomes. Modules have been, in fact, de-
fined by one approach as structures making the network 
more robust towards small perturbations [71]. The rationale 
behind this idea is, that once a perturbation reached a mod-
ule, it ‘gets lost’ in the denser inter-modular link-structure, 
and has a smaller chance to affect adjacent modules. Both 
modular overlaps and the hierarchical organization of mod-
ules have large effects on the propagation of perturbations 
[72]. Thus changes of modular structure after various cellu-
lar events, such as stress [55] may greatly re-model perturba-
tion pathways in cells. 

 Regretfully, a general model taking into account both the 
propagation of conformational changes inside the individual 
proteins as well as in the complex protein interactome is 
missing. Based on the above assumptions the following con-
siderations have to be kept in mind when constructing such a 
model (Table 1). Little is known of the propagation mecha-
nisms of perturbations between proteins. Thus the currently 
existing conjectures about the possible ways of interaction 
do not allow the construction of a good model based on 
physical evidence. However, there are feasible phenomenol-
ogical possibilities, where the key question is the proper 
form of coupling we should use. Although delays are often 
of great significance, biologically relevant pulse-like cou-
pling highly complicates this problem, too. Models stem-
ming from statistical mechanics (termed here as stochastic 
modeling) seem to deliver better results at this stage of re-
search. Stochastic modeling offers another advantage: in 
such a model the protein structures and perturbation propa-
gation in these amino acid networks are not studied. This is 
obviously a huge simplification, though it should be applied 
in all cases, where it is possible to achieve good agreement 
with experimental results without more rigorous investiga-
tions. If it is inevitable to analyze protein structures then 
models based on atomic connections are deemed to be the 
most effective. First, information-theoretical approaches are 
advantageous as they are easy to use and proper predictions 
for communication propensities can be expected. However, 
in the lack of detailed information about allosteric processes, 
the effect of large structural changes can not simply be in-
corporated, though it would be essential in case of most con-
formational spreads. Elastic models suffer the same prob-
lems: they are eligible for a proper description of equilibrium 
fluctuations, but they are unable to interpret protein folding. 
Neither do nonlinear models cope with this problem well: 
they are able to catch specific characteristics like energy 
localization, but the modified forces may lead to undesired 
effects and additional difficulties, and a proper description of 
allostery seems to be far away. Despite serious efforts, tra-
jectories in the phase space of conformational states are un-
predictable for a complete protein-folding event. In sum-
mary, it seems that further steps are needed to gain insight 
into perturbation propagation inside individual proteins al-
lowing for a more precise modeling. Until then, we have to 
put up with coupled oscillator systems or more favorably 
with stochastic models of conformational spread. 

7. DISCRIMINATION BETWEEN SIGNALS AND 
NOISE 

 Cellular networks function in an extremely noisy envi-
ronment having both external and internal noise. Signals 
have to be learned by the amino acid networks and interac-
tomes allowing an evolution of link-rearrangements, which 
provide an amplified ‘highway’ for signals, and filter noise. 
Signals are not only a learned property of networks, but their 
discriminatory network structures have to be special showing 
an inherent robustness against perturbations. As an often-
studied example, the bacterial chemotactic pathway shows 
an optimally robust performance against perturbations while 
minimizing the cost of high protein abundance [73]. The 
yeast interactome shows another feature increasing robust-
ness further at the systems level. Here dynamic modules with 
a higher flexibility for the condition-dependent regulation of 
cell behavior are segregated from static modules, which pro-
vide robustness to the cell against genetic perturbations or 
protein expression noise [40]. Network robustness is not 
‘free’, not automatic. Millions of biological network varia-
tions studied by Ciliberti et al. [74] showed a skewed distri-
bution, with a very small number of networks being vastly 
more robust than the rest. Very remarkably, these specifi-
cally robust networks were ‘connected’ and evolvable mean-
ing that they can be easily transformed to each other by a 
small number of changes in network topologies. This prop-
erty of biological networks gives a chance for the gradual 
evolution of signaling systems as skeletons of the underlying 
amino acid and protein networks [75], while preserving net-
work robustness. The emergence of signal transduction 
pathway may use the following topological ‘tricks’: 

• remodeling of link-density and link-weights resulting in 
the discrimination of roads and superhighways [75]; 

• linking and disjoining roads and superhighways allowing 
an efficient percolation of variable network regions [67]; 

• linking and disjoining hubs, thus constructing and de-
stroying a rich-club [43]; 

• changes in the structure, overlaps and hierarchy of net-
work modules [55, 71, 72]. 

 We are at the very beginning of the understanding of the 
dynamical richness allowing the continuous emergence and 
suppression of the perturbation-channeling signaling topolo-
gies of our cells. 

8. APPLICATIONS OF PERTURBATION WAVES IN 
DRUG DESIGN 

 Many drug-candidates, which have been designed to tar-
get a specific disease-related protein failed due to the intrin-
sic robustness of cellular networks against various perturba-
tions [76]. Perturbation analysis of gene expression profiles 
as readily available systems level information in drug re-
search has been successfully applied to identify drug-targets 
(primarily affected genes) with an approximate success rate 
of 70% to 80% [77]. The effects of perturbations on flux-
balance analysis (metabolic control analysis) are also in-
creasingly used for the identification of novel drug targets 
[78]. Signal transmission proteins have been increasingly 
identified as drug targets in the therapy of a large number of
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Table 1. Gains and Losses of Possible Perturbation Wave Models 

Model Gain Loss Complications* 

Perturbation start 

Location of perturbation starting points Effects of different origins can be modeled The same precision of data is needed in 

the whole network 

* 

Perturbation waves with multiple start-

ing points 

Possible model for interfering effects Need for hardly available data on time 

dependence 

** 

Perturbation type (single peak, peak-set, 

continuous, etc.) 

Interaction among different perturbations Need for detailed knowledge of all types ** 

Shape of perturbation (Gaussian, rectan-

gle-like, sinusoid, etc.) 

A greater complexity of perturbation 

events 

Need for biological data of the shapes ** 

Perturbation spread 

Directed and weighted coupling 

strength 

Strength of effects, directions of propaga-

tion  

Growing computational costs ** 

Non-zero coupling times, delays More precise models for time dependence Need for precise biological data ** 

No inner protein structure Easy to use All structural effects  

Topological models Interactome topology Dynamical properties * 

Stochastic model with statistical physical 

origins 

Experimental evidence on conformational 

spread 

Need for correct parameter data (more or 

less available) 

* 

Complex computer based solutions Discrete, stochastic behavior (interactions) Complications swiftly increase for not so 

simple situations 

* 

Simplified inner protein structure (os-

cillator models) 

Widely studied One or few inner variables instead of 

structure 

* 

Simple oscillator models  Well known behavior Biological resemblance * 

Pulse-coupled oscillators One biological property regained Need for parameter (e.g. delay) data (par-

tially available) 

** 

Spatially moving oscillators Discrete interactions Boundary effects; no studies concerning 

perturbation waves  

** 

Refined inner protein structure Reality (refined time dependence, exact 

propagation conduits) 

Chances for describing allostery *** 

Information theoretical Correct communication properties Need for unavailable structure data  * 

Linear elastic models Correct predictions for equilibrium fluc-

tuations 

Need for unavailable structure data ** 

Nonlinear elastic Description of energy localization Need for unavailable structure data 

Possible side-effects. 

*** 

Effects of the medium (water-induced 

fluctuations, cellular crowding-induced 

excluded volume, etc.) 

Another important aspect regained Complex interactions have to be consid-

ered  

*** 

*The approximate level of difficulty has been marked by asterisks. Difficulties may come from increased computational complexity (longer run-times) as well as from the currently 

un-available data necessary for the particular method.. 

diseases [79, 80]. However, we have only an initial under-
standing of changes in signal transduction pathways in 
stress, disease, or – actually – in the presence of a drug 
molecule causing resistance. The perturbation analysis 
methods outlined in this review will greatly help us to cir-
cumvent these formidable problems and to expand the cur-
rently rather small target-set in human proteins. 

9. CONCLUSIONS AND PERSPECTIVES 

 In this review we have detailed the currently available 
applications of three powerful network-related methods, 
game theory, percolation theory and perturbation analysis on 
amino acid networks (i.e. single proteins), and protein-
protein interaction networks (i.e. interactomes). In the fol-
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lowing points we will briefly outline a few major findings 
and suggestions, which may be important for the progress in 
this field. 

• Protein games. The identification of weak, long-range 
attractions [27] proved to be an important step for model-
ing ‘protein-games’ [29], i.e. the interdependence of mu-
tually ‘agreeable’ conformational changes preparing two 
proteins to interact with each other. ‘Fuzzyness’ in terms 
of protein dynamics as well as structural disorder [35] 
together with ‘learning’ in terms of the communication 
and gradual changes described above may be crucial for 
the development of mutual cooperation [34] during the 
docking process. 

• Percolation. Changes of percolation during the dynami-
cal rearrangement of amino acid networks and protein-
protein interaction networks, such as during protein fold-
ing or aging may offer a refined monitoring of the emer-
gent properties of these complex systems. Different local 
levels of percolation may reveal different functional 
states of cellular modules/protein complexes, which may 
undergo profound changes in stress, during the cell cy-
cle, cell differentiation and disease. Moreover, the simul-
taneous assessment of intra- and inter-protein percolation 
will give information on cellular dynamics at an un-
precedented detail. 

• Propagation of perturbations. When assessing the pos-
sible propagation of perturbations in cells, we have to 
take into account several layers of complexities (Table 
1). First, the starting conditions of perturbations have to 
be set, namely the number and location(s) of the starting 
point(s) of perturbation(s); the type of perturbation (e.g. 
single peak, peak-set, continuous, etc.) and finally, the 
shape of perturbation (e.g. Gaussian, rectangle-like, sinu-
soid, etc.). Second, coupling strength and coupling time 
(delays) have to be considered. Third, we have to decide, 
whether we will take into account the propagation of per-
turbations inside the proteins or not. If yes, whether we 
would like to use a grossly simplified or a detailed 
model. Fourth, we need to decide, if the effects of the 
medium (like water-induced fluctuations or cellular 
crowding) are included or not. If we will include all these 
complexities we will know practically anything on cellu-
lar dynamics. However, even half of the above complica-
tions go much beyond the current computational possi-
bilities, and (more importantly) require much more than 
the currently available data. Despite of these difficulties 
modeling of perturbation propagation will be an ex-
tremely hot and extremely promising research are of the 
near future. 

 The above three powerful methods will be crucial in the 
design of novel drug targets and target-sets. This is espe-
cially true, if we want to avoid network remodeling-based 
resistance [76] and want to design drugs, which affect the 
targets of the grossly altered networks of ‘sick cells’. We 
have to learn much more how cellular networks  

(1) remodel their link-density and link-weights reshuffling 
network roads and superhighways [75];  

(2) link and disjoin roads, superhighways and hubs allowing 
variable levels of percolation at different network regions 
[43, 67]; and  

(3) change the structure, overlaps and hierarchy of their 
modules [55, 71, 72].  

 We are at the very beginning of the understanding of the 
dynamics of cellular networks in stress, diseases and aging. 
The use of the above ‘golden-triangle’ of game theory, per-
colation theory and perturbation analysis may offer a win-
ning strategy to get closer to the core of this problem. 
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